Fourier Analysis on Starlike Lipschitz Surfaces
نویسندگان
چکیده
منابع مشابه
Lectures on Lipschitz Analysis
(1.1) |f(a)− f(b)| ≤ L |a− b| for every pair of points a, b ∈ A. We also say that a function is Lipschitz if it is L-Lipschitz for some L. The Lipschitz condition as given in (1.1) is a purely metric condition; it makes sense for functions from one metric space to another. In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. In Section 2, we study extensio...
متن کاملThe Fourier Transforms of Lipschitz Functions on the Heisenberg Group
We study the order of magnitude of the Fourier transforms of certain Lipschitz functions on the Heisenberg group Hn. We compare our conclusions with some previous results in the field.
متن کاملFourier Transforms of Lipschitz Functions on Certain Lie Groups
We study the order of magnitude of the Fourier transforms of certain Lipschitz functions on the special linear group of real matrices of order two. 2000 Mathematics Subject Classification. 42A38, 44A15, 42C99, 44A05.
متن کاملFourier solution of canonical problem in starlike domains
Many applications of Mathematical Physics and Engineering are connected with the Laplacian, however, the most part of BVP relevant to the Laplacian are solved in explicit form only for domains with a very special shape, namely intervals, cylinders or domains with particular (circular or spherical) symmetries [1]. In recent articles (see [2], [3], [4], [5]) a solution of the Dirichlet problem fo...
متن کاملFourier-mukai Transform on Abelian Surfaces
where x = (x0, x1, x2), y = (y0, y1, y2) with xi, yi ∈ H (X,Z). For an object E ∈ D(X), we define the Mukai vector v(E) ∈ H(X,Z) of E as the Chern character of E. We also call an element v ∈ H(X,Z) Mukai vector, if v = v(E) for an object E ∈ D(X). We denote the coarse moduli space of S-equivalence classes of semi-stable sheaves E with v(E) = v by MH(v) and the open subscheme consisting of stabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2001
ISSN: 0022-1236
DOI: 10.1006/jfan.2001.3750